Rcf 2 Evaluation and Consistency Ε&c * Π O R

نویسنده

  • Michael Pfender
چکیده

We construct here an iterative evaluation of all PR map codes: progress of this iteration is measured by descending complexity within “Ordinal” O : = N[ω] of polynomials in one indeterminate, ordered lexicographically. Non-infinit descent of such iterations is added as a mild additional axiom schema (πO) to Theory PRA = PR + (abstr) of Primitive Recursion with predicate abstraction, out of forgoing part RCF 1. This then gives (correct) on-termination of iterative evaluation of argumented deduction trees as well, for theories πOR = PRA + (πO). By means of this constructive evaluation the Main Theorem is proved, on Termination-conditioned (Inner) Soundness for Theories πOR, Ordinal O extending N[ω]. As a consequence we get Self-Consistency for these theories πOR, namely πOR-derivation of πOR’s own free-variable Consistency formula ConπOR = ConπOR(k) =def ¬ProvπOR(k, pfalseq ) : N → 2, k ∈ N free. Here PR predicate ProvT(k, u) says, for an arithmetical theory T : number k ∈ N is a T-Proof code proving internally T-formula code u : k is an arithmetised Proof for u in Gödel’s sense. As to expect from classical setting, Self-Consistency of πOR gives (unconditioned) Objective Soundness. Termination-Conditioned Soundness holds “already” for PRA, but it turns out that at least present derivation of Consistency from this conditioned Soundness depends on schema (πO) of non-infinit descent in Ordinal O : = N[ω]. 0 this is an excerpt of part 2 of a cycle on Recursive Categorical Foundations, Abstract, Summary, basic section on Iterative – onterminating – evaluation, and References. 0 Legend of LOGO: ε for Constructive evaluation, C for Self-Consistency to be derived for suitable theories πOR strengthening in a “mild” way the (categorical) Free-Variables Theory PRA of Primitive Recursion with predicate abstraction TU Berlin, Mathematik, [email protected] last revised February 19, 2009

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک پلیمر کوئوردیناسیونی از منگنز(III) با پیریدین-3،2-دی کربوکسیلیک اسید و 4، 4-بی‌پیریدین

The polymeric compound, {(C10H9N2)[Mn(C7H3NO4)2].­(C10H8N2).6H2O}n, was prepared by the reaction of manganese (II) nitrate with pyridine-2,3-dicarboxylic acid, (py-2,3-dcH2) and 4,4'-bipyridine (4,4'-bipy) in a 1:2:4 molar ratio. The crystal system of the complex is monoclinic with space group P21/n and four molecules per unit cell. The unit cell parameters are: a = 22.2099(15) Å, b = 6.6599(4)...

متن کامل

ساختار بلوری کمپلکس ‌]آکوا(2،'2-بای پیریدین)(6-کربوکسی پیریدین-2-کربوکسیلاتو[ مس(II) نیترات آبدار در 150 کلوین

The reaction of copper (II) nitrate with pyridine-2,6-dicarboxylic acid, (pydcH2) and 2,2'-bipyridine (2,2'-bipy) led to the formation of the title compound, [Cu(C7H4NO4)(C10H8N2)(H2O)]NO3.H2O, or [Cu(pydcH)(2,2'-bipy)(H2O)]NO3.H2O. The crystal system of the complex is triclinic with space group P and two molecules per unit cell. The unit cell parameters are: a = 7.0438 (6) Å, b = 11.3215 (10) ...

متن کامل

Rcf 4 Inconsistent Quantification Ac ∀∃! Ε

We exhibit canonical middle-inverse Choice maps within categorical (Free-Variable) Theory of Primitive Recursion as well as in Theory of partial PR maps over Theory of Primitive Recursion with predicate abstraction. Using these choice-maps, defined by μ-recursion, we address the consistency problem for a minimal Quantified extension Q of latter two theories: We prove, that Q’s ∃-defined μ-opera...

متن کامل

X-Ray, Crystal Structure and Solution Phase Studies of a Polymeric SrII Compound

In the crystal structure of the title polymeric compound, [C42H38N6O33Sr5.2(H2O)]n, five independent metal atoms (Sr1-Sr5) have different coordination environments. The Sr1 and Sr5 atoms are nine coordinated and feature distorted tricapped trigonal-prismatic and capped square-antiprismatic geometries, respectively....

متن کامل

M ay 2 00 4 ASYMPTOTIC BEHAVIOUR OF ARITHMETICALLY COHEN - MACAULAY BLOW - UPS

This paper addresses problems related to the existence of arithmetic Macaulayfications of projective schemes. Let Y be the blow-up of a projective scheme X = Proj R along the ideal sheaf of I ⊂ R. It is known that there are embeddings Y ∼ = Proj k[(I e) c ] for c ≥ d(I)e + 1, where d(I) denotes the maximal generating degree of I, and that there exists a Cohen-Macaulay ring of the form k[(I e) c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009